
Merge StarDist Masks

Niklas Netter

Jul 28, 2023

CONTENTS

1 Features 3

2 Requirements 5

3 Usage 7

4 Installation 9

5 Contributing 11

6 License 13

7 Issues 15

8 How to cite 17

9 Credits 19

Python Module Index 37

Index 39

i

ii

Merge StarDist Masks

This repository contains the python package for the new StarDist post-processing step StarDist OPP. StarDist OPP
allows to use StarDist segmentation on non-star-convex objects. In our paper, we show that StarDist OPP outper-
forms other methods in instance segmentation tasks for three-dimensional microbial biofilms. Check it out for more
information.

CONTENTS 1

https://pypi.org/project/merge-stardist-masks/
https://zenodo.org/badge/latestdoi/454865222
https://pypi.org/project/merge-stardist-masks/
https://pypi.org/project/merge-stardist-masks
https://opensource.org/licenses/MIT
https://merge-stardist-masks.readthedocs.io/
https://github.com/gatoniel/merge-stardist-masks/actions?workflow=Tests
https://codecov.io/gh/gatoniel/merge-stardist-masks
https://github.com/pre-commit/pre-commit
https://github.com/stardist/stardist
https://doi.org/10.1111/mmi.15064

Merge StarDist Masks

2 CONTENTS

CHAPTER

ONE

FEATURES

• StarDist OPP merges masks together - hence the repository name

• StarDist OPP works in 2D and 3D

• In 2D, StarDist OPP works also on big and winding objects

3

Merge StarDist Masks

4 Chapter 1. Features

CHAPTER

TWO

REQUIREMENTS

• A StarDist installation.

5

https://github.com/stardist/stardist

Merge StarDist Masks

6 Chapter 2. Requirements

CHAPTER

THREE

USAGE

Please see the EXAMPLE in Usage for details or check out the tutorial of our napari plugin to directly use StarDist
OPP on your data.

7

usage.html
https://merge-stardist-masks.readthedocs.io/en/latest/napari-plugin.html
https://github.com/gatoniel/napari-merge-stardist-masks

Merge StarDist Masks

8 Chapter 3. Usage

CHAPTER

FOUR

INSTALLATION

You can install StarDist OPP via pip from PyPI:

$ pip install merge-stardist-masks

9

https://pip.pypa.io/
https://pypi.org/

Merge StarDist Masks

10 Chapter 4. Installation

CHAPTER

FIVE

CONTRIBUTING

Contributions are very welcome. To learn more, see the Contributor Guide.

11

contributing.html

Merge StarDist Masks

12 Chapter 5. Contributing

CHAPTER

SIX

LICENSE

Distributed under the terms of the MIT license, StarDist OPP is free and open source software.

13

https://opensource.org/licenses/MIT

Merge StarDist Masks

14 Chapter 6. License

CHAPTER

SEVEN

ISSUES

If you encounter any problems, please file an issue along with a detailed description.

15

https://github.com/gatoniel/merge-stardist-masks/issues

Merge StarDist Masks

16 Chapter 7. Issues

CHAPTER

EIGHT

HOW TO CITE

@article{https://doi.org/10.1111/mmi.15064,
author = {Jelli, Eric and Ohmura, Takuya and Netter, Niklas and Abt, Martin and Jiménez-
→˓Siebert, Eva and Neuhaus, Konstantin and Rode, Daniel K. H. and Nadell, Carey D. and␣
→˓Drescher, Knut},
title = {Single-cell segmentation in bacterial biofilms with an optimized deep learning␣
→˓method enables tracking of cell lineages and measurements of growth rates},
journal = {Molecular Microbiology},
volume = {119},
number = {6},
pages = {659-676},
keywords = {3D segmentation, biofilm, deep learning, image analysis, image cytometry,␣
→˓Vibrio cholerae},
doi = {https://doi.org/10.1111/mmi.15064},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/mmi.15064},
eprint = {https://onlinelibrary.wiley.com/doi/pdf/10.1111/mmi.15064},
abstract = {Abstract Bacteria often grow into matrix-encased three-dimensional (3D)␣
→˓biofilm communities, which can be imaged at cellular resolution using confocal␣
→˓microscopy. From these 3D images, measurements of single-cell properties with high␣
→˓spatiotemporal resolution are required to investigate cellular heterogeneity and␣
→˓dynamical processes inside biofilms. However, the required measurements rely on the␣
→˓automated segmentation of bacterial cells in 3D images, which is a technical challenge.
→˓ To improve the accuracy of single-cell segmentation in 3D biofilms, we first␣
→˓evaluated recent classical and deep learning segmentation algorithms. We then extended␣
→˓StarDist, a state-of-the-art deep learning algorithm, by optimizing the post-
→˓processing for bacteria, which resulted in the most accurate segmentation results for␣
→˓biofilms among all investigated algorithms. To generate the large 3D training dataset␣
→˓required for deep learning, we developed an iterative process of automated␣
→˓segmentation followed by semi-manual correction, resulting in >18,000 annotated Vibrio␣
→˓cholerae cells in 3D images. We demonstrate that this large training dataset and the␣
→˓neural network with optimized post-processing yield accurate segmentation results for␣
→˓biofilms of different species and on biofilm images from different microscopes.␣
→˓Finally, we used the accurate single-cell segmentation results to track cell lineages␣
→˓in biofilms and to perform spatiotemporal measurements of single-cell growth rates␣
→˓during biofilm development.},
year = {2023}
}

17

Merge StarDist Masks

18 Chapter 8. How to cite

CHAPTER

NINE

CREDITS

This project was generated from @cjolowicz’s Hypermodern Python Cookiecutter template.

9.1 Usage

merge_stardist_masks.naive_fusion.naive_fusion(dists: ndarray[Any, dtype[float64]], probs:
ndarray[Any, dtype[float64]], rays: Rays_Base | None
= None, prob_thresh: float = 0.5, grid: Tuple[int, ...] =
(2, 2, 2), no_slicing: bool = False, max_full_overlaps:
int = 2, erase_probs_at_full_overlap: bool = False,
show_overlaps: bool = False, respect_probs: bool =
False)→ ndarray[Any, dtype[uint16]] | ndarray[Any,
dtype[int32]]

Merge overlapping masks given by dists, probs, rays.

Performs a naive iterative scheme to merge the masks that a StarDist network has calculated to generate a label
image. This function can perform 2D and 3D segmentation. For 3D segmentation rays has to be passed from
the StarDist model.

Parameters

• dists (ndarray[Any, dtype[float64]]) – 3- or 4-dimensional array representing dis-
tances of each mask as outputed by a StarDist model. For 2D predictions the shape is
(len_y, len_x, n_rays), for 3D predictions it is (len_z, len_y, len_x, n_rays).

• probs (ndarray[Any, dtype[float64]]) – 2- or 3-dimensional array representing the
probabilities for each mask as outputed by a StarDist model. For 2D predictions the shape is
(len_y, len_x), for 3D predictions it is (len_z, len_y, len_x).

• rays (Rays_Base | None) – For 3D predictions rays must be set otherwise a ValueError
is raised. It should be the Rays_Base instance used by the StarDist model.

• prob_thresh (float) – Only masks with probability above this threshold are considered.

• grid (Tuple[int, ...]) – Should be of length 2 for 2D and of length 3 for 3D segmen-
tation. This is the grid information about the subsampling occuring in the StarDist model.

• no_slicing (bool) – For very big and winded objects this should be set to True. However,
this might result in longer calculation times.

• max_full_overlaps (int) – Maximum no. of full overlaps before current object is treated
as finished.

• erase_probs_at_full_overlap (bool) – If set to True probs are set to -1 whenever a
full overlap is detected.

19

https://github.com/cjolowicz
https://github.com/cjolowicz/cookiecutter-hypermodern-python

Merge StarDist Masks

• show_overlaps (bool) – If set to true, overlaps are set to -1.

• respect_probs (bool) – If set to true, overlapping elements are overwritten by considering
their probabilities. Only works when show_overlaps is ‘false’.

Returns
The label image with uint16 labels. For 2D, the shape is (len_y * grid[0], len_x *
grid[1]) and for 3D it is (len_z * grid[0], len_y * grid[1], len_z * grid[2]).

Raises

• ValueError – If rays is None and 3D inputs are given or when probs.ndim !=
len(grid). # noqa: DAR402 ValueError

• NotImplementedError – If grid is anisotropic and respect_probs is set to true.

Return type
ndarray[Any, dtype[uint16]] | ndarray[Any, dtype[int32]]

Example

>>> from merge_stardist_masks.naive_fusion import naive_fusion
>>> from stardist.rays3d import rays_from_json
>>> probs, dists = model.predict(img) # model is a 3D StarDist model
>>> rays = rays_from_json(model.config.rays_json)
>>> lbl = naive_fusion(dists, probs, rays, grid=model.config.grid)

9.2 napari plugin

9.2.1 Installation

Make sure to have a running napari installation.

Via pip

In the environment with your napari installation run:

$ pip install merge-stardist-masks

Within napari

Within napari go to Plugins -> Install/Uninstall Plugins... and search for napari-merge-stardist-masks in
the lower list. Then click on the blue install button.

20 Chapter 9. Credits

https://napari.org/stable/tutorials/fundamentals/installation.html

Merge StarDist Masks

After installation

Make sure to restart napari after the installation. If you do not find the plugins, go to Plugins -> Install/
Uninstall Plugins... and toggle the checkboxes in the upper list for stardist-napari and napari-merge-stardist-
masks.

9.2.2 Usage

Preparations

Download one of the pre-trained StarDist models from here and unzip the file.

Run a segmentation

1. Load sample data with File -> Open sample -> StarDist OPP sample data

2. Click Plugins -> StarDist OPP. Two widgets will open, the StarDist plugin and this plugin.

3. All the parameters in the StarDist plugin should be correctly set already. Make sure that the axes in the field
Image Axes are correct, for a 3D image it should be ZYX.

4. Select Custom 2D/3D in the field Model Type and choose the directory where you unzipped the pre-trained
model in the Custom Model field. See the image below for the correct settings.

9.2. napari plugin 21

https://github.com/gatoniel/napari-merge-stardist-masks/tree/main/models
https://github.com/stardist/stardist-napari

Merge StarDist Masks

5. Hit Run. And wait until the CNN calculates the outputs. The outputs of the CNN are displayed once they are

22 Chapter 9. Credits

Merge StarDist Masks

calculated.

6. In the StarDist OPP widget, select again the path to the unzipped pre-trained model in the field model path.
Then select StarDist distances (data) and StarDist probability (data) for the dists and probs
fields, respectively.

7. You can play around with the other fields. However, this might lead to errors. For 3D images, you should set
subtract dist to 1.00 the other settings are already fine. See the following image for proper settings.

8. Hit Run in the StarDist OPP widget. The post-processing starts and might take some time (on our machine it
takes ~10 minutes). Once the post-processing is done, the label image will be shown in the viewer.

9.2. napari plugin 23

Merge StarDist Masks

9.3 Reference

9.3.1 merge_stardist_masks.naive_fusion

Naively merge all masks that have sufficient overlap and probability.

merge_stardist_masks.naive_fusion.get_poly_list_to_label(shape: Tuple[int, ...], rays: Rays_Base |
None)→
merge_stardist_masks.naive_fusion.PolyToLabelSignature

Depending on len(shape) return different functions to calculate labels.

Parameters

• shape (Tuple[int, ...]) –

• rays (Rays_Base | None) –

Return type
merge_stardist_masks.naive_fusion.PolyToLabelSignature

merge_stardist_masks.naive_fusion.get_poly_to_label(shape: Tuple[int, ...], rays: Rays_Base | None)
→
merge_stardist_masks.naive_fusion.PolyToLabelSignature

Depending on len(shape) return different functions to calculate labels.

Parameters

• shape (Tuple[int, ...]) –

• rays (Rays_Base | None) –

Return type
merge_stardist_masks.naive_fusion.PolyToLabelSignature

merge_stardist_masks.naive_fusion.inflate_array(x: ndarray[Any, dtype[T]], grid: Tuple[int, ...],
default_value: int | float = 0)→ ndarray[Any,
dtype[T]]

Create new array with increased shape but old values of x.

Parameters

• x (ndarray[Any, dtype[T]]) –

• grid (Tuple[int, ...]) –

• default_value (int | float) –

Return type
ndarray[Any, dtype[T]]

merge_stardist_masks.naive_fusion.mesh_from_shape(shape: Tuple[int, ...]) → ndarray[Any,
dtype[int64]]

Convenience function to generate a mesh.

Parameters
shape (Tuple[int, ...]) –

Return type
ndarray[Any, dtype[int64]]

24 Chapter 9. Credits

Merge StarDist Masks

merge_stardist_masks.naive_fusion.my_polygons_list_to_label(dists: numpy.typing.ArrayLike, points:
numpy.typing.ArrayLike, shape:
Tuple[int, ...]) → ndarray[Any,
dtype[int64]]

Convenience funtion to pass 1-d arrays to polygons_to_label.

Parameters

• dists (numpy.typing.ArrayLike) –

• points (numpy.typing.ArrayLike) –

• shape (Tuple[int, ...]) –

Return type
ndarray[Any, dtype[int64]]

merge_stardist_masks.naive_fusion.my_polygons_to_label(dists: numpy.typing.ArrayLike, points:
numpy.typing.ArrayLike, shape: Tuple[int,
...]) → ndarray[Any, dtype[int64]]

Convenience funtion to pass 1-d arrays to polygons_to_label.

Parameters

• dists (numpy.typing.ArrayLike) –

• points (numpy.typing.ArrayLike) –

• shape (Tuple[int, ...]) –

Return type
ndarray[Any, dtype[int64]]

merge_stardist_masks.naive_fusion.my_polyhedron_list_to_label(rays: Rays_Base, dists:
numpy.typing.ArrayLike, points:
numpy.typing.ArrayLike, shape:
Tuple[int, ...]) → ndarray[Any,
dtype[int64]]

Convenience funtion to pass 1-d arrays to polyhedron_to_label.

Parameters

• rays (Rays_Base) –

• dists (numpy.typing.ArrayLike) –

• points (numpy.typing.ArrayLike) –

• shape (Tuple[int, ...]) –

Return type
ndarray[Any, dtype[int64]]

merge_stardist_masks.naive_fusion.my_polyhedron_to_label(rays: Rays_Base, dists:
numpy.typing.ArrayLike, points:
numpy.typing.ArrayLike, shape: Tuple[int,
...]) → ndarray[Any, dtype[int64]]

Convenience funtion to pass 1-d arrays to polyhedron_to_label.

Parameters

• rays (Rays_Base) –

• dists (numpy.typing.ArrayLike) –

9.3. Reference 25

Merge StarDist Masks

• points (numpy.typing.ArrayLike) –

• shape (Tuple[int, ...]) –

Return type
ndarray[Any, dtype[int64]]

merge_stardist_masks.naive_fusion.naive_fusion(dists: ndarray[Any, dtype[float64]], probs:
ndarray[Any, dtype[float64]], rays: Rays_Base | None
= None, prob_thresh: float = 0.5, grid: Tuple[int, ...] =
(2, 2, 2), no_slicing: bool = False, max_full_overlaps:
int = 2, erase_probs_at_full_overlap: bool = False,
show_overlaps: bool = False, respect_probs: bool =
False)→ ndarray[Any, dtype[uint16]] | ndarray[Any,
dtype[int32]]

Merge overlapping masks given by dists, probs, rays.

Performs a naive iterative scheme to merge the masks that a StarDist network has calculated to generate a label
image. This function can perform 2D and 3D segmentation. For 3D segmentation rays has to be passed from
the StarDist model.

Parameters

• dists (ndarray[Any, dtype[float64]]) – 3- or 4-dimensional array representing dis-
tances of each mask as outputed by a StarDist model. For 2D predictions the shape is
(len_y, len_x, n_rays), for 3D predictions it is (len_z, len_y, len_x, n_rays).

• probs (ndarray[Any, dtype[float64]]) – 2- or 3-dimensional array representing the
probabilities for each mask as outputed by a StarDist model. For 2D predictions the shape is
(len_y, len_x), for 3D predictions it is (len_z, len_y, len_x).

• rays (Rays_Base | None) – For 3D predictions rays must be set otherwise a ValueError
is raised. It should be the Rays_Base instance used by the StarDist model.

• prob_thresh (float) – Only masks with probability above this threshold are considered.

• grid (Tuple[int, ...]) – Should be of length 2 for 2D and of length 3 for 3D segmen-
tation. This is the grid information about the subsampling occuring in the StarDist model.

• no_slicing (bool) – For very big and winded objects this should be set to True. However,
this might result in longer calculation times.

• max_full_overlaps (int) – Maximum no. of full overlaps before current object is treated
as finished.

• erase_probs_at_full_overlap (bool) – If set to True probs are set to -1 whenever a
full overlap is detected.

• show_overlaps (bool) – If set to true, overlaps are set to -1.

• respect_probs (bool) – If set to true, overlapping elements are overwritten by considering
their probabilities. Only works when show_overlaps is ‘false’.

Returns
The label image with uint16 labels. For 2D, the shape is (len_y * grid[0], len_x *
grid[1]) and for 3D it is (len_z * grid[0], len_y * grid[1], len_z * grid[2]).

Raises

• ValueError – If rays is None and 3D inputs are given or when probs.ndim !=
len(grid). # noqa: DAR402 ValueError

• NotImplementedError – If grid is anisotropic and respect_probs is set to true.

26 Chapter 9. Credits

Merge StarDist Masks

Return type
ndarray[Any, dtype[uint16]] | ndarray[Any, dtype[int32]]

Example

>>> from merge_stardist_masks.naive_fusion import naive_fusion
>>> from stardist.rays3d import rays_from_json
>>> probs, dists = model.predict(img) # model is a 3D StarDist model
>>> rays = rays_from_json(model.config.rays_json)
>>> lbl = naive_fusion(dists, probs, rays, grid=model.config.grid)

merge_stardist_masks.naive_fusion.naive_fusion_anisotropic_grid(dists: ndarray[Any,
dtype[float64]], probs:
ndarray[Any, dtype[float64]],
rays: Rays_Base | None = None,
prob_thresh: float = 0.5, grid:
Tuple[int, ...] = (2, 2, 2),
no_slicing: bool = False,
max_full_overlaps: int = 2,
erase_probs_at_full_overlap:
bool = False, show_overlaps:
bool = False, respect_probs:
bool = False)→ ndarray[Any,
dtype[uint16]] | ndarray[Any,
dtype[int32]]

Merge overlapping masks given by dists, probs, rays for anisotropic grid.

Performs a naive iterative scheme to merge the masks that a StarDist network has calculated to generate a label
image. This function can perform 2D and 3D segmentation. For 3D segmentation rays has to be passed from
the StarDist model.

Parameters

• dists (ndarray[Any, dtype[float64]]) – 3- or 4-dimensional array representing dis-
tances of each mask as outputed by a StarDist model. For 2D predictions the shape is
(len_y, len_x, n_rays), for 3D predictions it is (len_z, len_y, len_x, n_rays).

• probs (ndarray[Any, dtype[float64]]) – 2- or 3-dimensional array representing the
probabilities for each mask as outputed by a StarDist model. For 2D predictions the shape is
(len_y, len_x), for 3D predictions it is (len_z, len_y, len_x).

• rays (Rays_Base | None) – For 3D predictions rays must be set otherwise a ValueError
is raised. It should be the Rays_Base instance used by the StarDist model.

• prob_thresh (float) – Only masks with probability above this threshold are considered.

• grid (Tuple[int, ...]) – Should be of length 2 for 2D and of length 3 for 3D segmen-
tation. This is the grid information about the subsampling occuring in the StarDist model.

• no_slicing (bool) – For very big and winded objects this should be set to True. However,
this might result in longer calculation times.

• max_full_overlaps (int) – Maximum no. of full overlaps before current object is treated
as finished.

• erase_probs_at_full_overlap (bool) – If set to True probs are set to -1 whenever a
full overlap is detected.

9.3. Reference 27

Merge StarDist Masks

• show_overlaps (bool) – If set to true, overlaps are set to -1.

• respect_probs (bool) – If set to true, overlapping elements are overwritten by considering
their probabilities. Only works when show_overlaps is ‘false’.

Returns
The label image with uint16 labels. For 2D, the shape is (len_y * grid[0], len_x *
grid[1]) and for 3D it is (len_z * grid[0], len_y * grid[1], len_z * grid[2]).

Raises
ValueError – If rays is None and 3D inputs are given or when probs.ndim != len(grid).
noqa: DAR402 ValueError

Return type
ndarray[Any, dtype[uint16]] | ndarray[Any, dtype[int32]]

Example

>>> from merge_stardist_masks.naive_fusion import naive_fusion_anisotropic_grid
>>> from stardist.rays3d import rays_from_json
>>> probs, dists = model.predict(img) # model is a 3D StarDist model
>>> rays = rays_from_json(model.config.rays_json)
>>> grid = model.config.grid
>>> lbl = naive_fusion_anisotropic_grid(dists, probs, rays, grid=grid)

merge_stardist_masks.naive_fusion.naive_fusion_isotropic_grid(dists: ndarray[Any,
dtype[float64]], probs:
ndarray[Any, dtype[float64]], rays:
Rays_Base | None = None,
prob_thresh: float = 0.5, grid: int
= 2, no_slicing: bool = False,
max_full_overlaps: int = 2,
erase_probs_at_full_overlap: bool
= False, show_overlaps: bool =
False, respect_probs: bool =
False)→ ndarray[Any,
dtype[uint16]] | ndarray[Any,
dtype[int32]]

Merge overlapping masks given by dists, probs, rays.

Performs a naive iterative scheme to merge the masks that a StarDist network has calculated to generate a label
image. This function can perform 2D and 3D segmentation. For 3D segmentation rays has to be passed from
the StarDist model.

Parameters

• dists (ndarray[Any, dtype[float64]]) – 3- or 4-dimensional array representing dis-
tances of each mask as outputed by a StarDist model. For 2D predictions the shape is
(len_y, len_x, n_rays), for 3D predictions it is (len_z, len_y, len_x, n_rays).

• probs (ndarray[Any, dtype[float64]]) – 2- or 3-dimensional array representing the
probabilities for each mask as outputed by a StarDist model. For 2D predictions the shape is
(len_y, len_x), for 3D predictions it is (len_z, len_y, len_x).

• rays (Rays_Base | None) – For 3D predictions rays must be set otherwise a ValueError
is raised. It should be the Rays_Base instance used by the StarDist model.

• prob_thresh (float) – Only masks with probability above this threshold are considered.

28 Chapter 9. Credits

Merge StarDist Masks

• grid (int) – This is the grid information about the subsampling occuring in the StarDist
model.

• no_slicing (bool) – For very big and winded objects this should be set to True. However,
this might result in longer calculation times.

• max_full_overlaps (int) – Maximum no. of full overlaps before current object is treated
as finished.

• erase_probs_at_full_overlap (bool) – If set to True probs are set to -1 whenever a
full overlap is detected.

• show_overlaps (bool) – If set to true, overlaps are set to -1.

• respect_probs (bool) – If set to true, overlapping elements are overwritten by considering
their probabilities. Only works when show_overlaps is ‘false’.

Returns
The label image with uint16 labels. For 2D, the shape is (len_y * grid[0], len_x *
grid[1]) and for 3D it is (len_z * grid[0], len_y * grid[1], len_z * grid[2]).

Raises
ValueError – If rays is None and 3D inputs are given or when probs.ndim != len(grid).
noqa: DAR402 ValueError

Return type
ndarray[Any, dtype[uint16]] | ndarray[Any, dtype[int32]]

Example

>>> from merge_stardist_masks.naive_fusion import naive_fusion_isotropic_grid
>>> from stardist.rays3d import rays_from_json
>>> probs, dists = model.predict(img) # model is a 3D StarDist model
>>> rays = rays_from_json(model.config.rays_json)
>>> grid = model.config.grid[0]
>>> lbl = naive_fusion_isotropic_grid(dists, probs, rays, grid=grid)

merge_stardist_masks.naive_fusion.no_slicing_slice_point(point: numpy.typing.ArrayLike, max_dist:
int)→ Tuple[Tuple[slice, ...],
ndarray[Any, dtype[int64]]]

Convenience function that returns the same point and tuple of slice(None).

Parameters

• point (numpy.typing.ArrayLike) –

• max_dist (int) –

Return type
Tuple[Tuple[slice, . . .], ndarray[Any, dtype[int64]]]

merge_stardist_masks.naive_fusion.paint_in_with_overlaps(paint_in: ndarray[Any, dtype[T]], shape:
ndarray[Any, dtype[bool_]], paint_id:
int)→ ndarray[Any, dtype[T]]

Set entries of array paint_in to paint_id or -1 if not free anymore.

Parameters

• paint_in (ndarray[Any, dtype[T]]) –

9.3. Reference 29

Merge StarDist Masks

• shape (ndarray[Any, dtype[bool_]]) –

• paint_id (int) –

Return type
ndarray[Any, dtype[T]]

merge_stardist_masks.naive_fusion.paint_in_without_overlaps(paint_in: ndarray[Any, dtype[T]],
shape: ndarray[Any, dtype[bool_]],
paint_id: int)→ ndarray[Any,
dtype[T]]

Set entries of array to paint_id according to boolean values in shape.

Parameters

• paint_in (ndarray[Any, dtype[T]]) –

• shape (ndarray[Any, dtype[bool_]]) –

• paint_id (int) –

Return type
ndarray[Any, dtype[T]]

merge_stardist_masks.naive_fusion.paint_in_without_overlaps_check_probs(paint_in:
ndarray[Any,
dtype[T]], shape:
ndarray[Any,
dtype[bool_]],
old_probs:
ndarray[Any,
dtype[float32]],
new_probs:
ndarray[Any,
dtype[float32]],
paint_id: int)→
Tuple[ndarray[Any,
dtype[T]],
ndarray[Any,
dtype[float32]]]

Set and overwrite entries of array to paint_id respecting their probabilities.

Parameters

• paint_in (ndarray[Any, dtype[T]]) –

• shape (ndarray[Any, dtype[bool_]]) –

• old_probs (ndarray[Any, dtype[float32]]) –

• new_probs (ndarray[Any, dtype[float32]]) –

• paint_id (int) –

Return type
Tuple[ndarray[Any, dtype[T]], ndarray[Any, dtype[float32]]]

merge_stardist_masks.naive_fusion.points_from_grid(shape: Tuple[int, ...], grid: Tuple[int, ...]) →
ndarray[Any, dtype[int64]]

Generate array giving out points for indices.

Parameters

30 Chapter 9. Credits

Merge StarDist Masks

• shape (Tuple[int, ...]) –

• grid (Tuple[int, ...]) –

Return type
ndarray[Any, dtype[int64]]

merge_stardist_masks.naive_fusion.poly_list_with_probs(dists_: numpy.typing.ArrayLike, points_:
numpy.typing.ArrayLike, probs_:
numpy.typing.ArrayLike, shape: Tuple[int,
...], poly_list_func:
merge_stardist_masks.naive_fusion.PolyToLabelSignature)
→ Tuple[ndarray[Any, dtype[int64]],
ndarray[Any, dtype[float32]]]

Return labels and according probabilities.

Parameters

• dists_ (numpy.typing.ArrayLike) –

• points_ (numpy.typing.ArrayLike) –

• probs_ (numpy.typing.ArrayLike) –

• shape (Tuple[int, ...]) –

• poly_list_func (merge_stardist_masks.naive_fusion.
PolyToLabelSignature) –

Return type
Tuple[ndarray[Any, dtype[int64]], ndarray[Any, dtype[float32]]]

merge_stardist_masks.naive_fusion.slice_point(point: numpy.typing.ArrayLike, max_dist: int)→
Tuple[Tuple[slice, ...], ndarray[Any, dtype[int64]]]

Calculate the extents of a slice for a given point and its coordinates within.

Parameters

• point (numpy.typing.ArrayLike) –

• max_dist (int) –

Return type
Tuple[Tuple[slice, . . .], ndarray[Any, dtype[int64]]]

9.4 Contributor Guide

Thank you for your interest in improving this project. This project is open-source under the MIT license and welcomes
contributions in the form of bug reports, feature requests, and pull requests.

Here is a list of important resources for contributors:

• Source Code

• Documentation

• Issue Tracker

• Code of Conduct

9.4. Contributor Guide 31

https://opensource.org/licenses/MIT
https://github.com/gatoniel/merge-stardist-masks
https://merge-stardist-masks.readthedocs.io/
https://github.com/gatoniel/merge-stardist-masks/issues
codeofconduct.html

Merge StarDist Masks

9.4.1 How to report a bug

Report bugs on the Issue Tracker.

When filing an issue, make sure to answer these questions:

• Which operating system and Python version are you using?

• Which version of this project are you using?

• What did you do?

• What did you expect to see?

• What did you see instead?

The best way to get your bug fixed is to provide a test case, and/or steps to reproduce the issue.

9.4.2 How to request a feature

Request features on the Issue Tracker.

9.4.3 How to set up your development environment

You need Python 3.7+ and the following tools:

• Poetry

• Nox

• nox-poetry

Install the package with development requirements:

$ poetry install

You can now run an interactive Python session, or the command-line interface:

$ poetry run python
$ poetry run merge-stardist-masks

9.4.4 How to test the project

Run the full test suite:

$ nox

List the available Nox sessions:

$ nox --list-sessions

You can also run a specific Nox session. For example, invoke the unit test suite like this:

$ nox --session=tests

Unit tests are located in the tests directory, and are written using the pytest testing framework.

32 Chapter 9. Credits

https://github.com/gatoniel/merge-stardist-masks/issues
https://github.com/gatoniel/merge-stardist-masks/issues
https://python-poetry.org/
https://nox.thea.codes/
https://nox-poetry.readthedocs.io/
https://pytest.readthedocs.io/

Merge StarDist Masks

9.4.5 How to submit changes

Open a pull request to submit changes to this project.

Your pull request needs to meet the following guidelines for acceptance:

• The Nox test suite must pass without errors and warnings.

• Include unit tests. This project maintains 100% code coverage.

• If your changes add functionality, update the documentation accordingly.

Feel free to submit early, though—we can always iterate on this.

To run linting and code formatting checks before committing your change, you can install pre-commit as a Git hook by
running the following command:

$ nox --session=pre-commit -- install

It is recommended to open an issue before starting work on anything. This will allow a chance to talk it over with the
owners and validate your approach.

9.5 Contributor Covenant Code of Conduct

9.5.1 Our Pledge

We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience
for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity
and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion,
or sexual identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community.

9.5.2 Our Standards

Examples of behavior that contributes to a positive environment for our community include:

• Demonstrating empathy and kindness toward other people

• Being respectful of differing opinions, viewpoints, and experiences

• Giving and gracefully accepting constructive feedback

• Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience

• Focusing on what is best not just for us as individuals, but for the overall community

Examples of unacceptable behavior include:

• The use of sexualized language or imagery, and sexual attention or advances of any kind

• Trolling, insulting or derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or email address, without their explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

9.5. Contributor Covenant Code of Conduct 33

https://github.com/gatoniel/merge-stardist-masks/pulls

Merge StarDist Masks

9.5.3 Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take
appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.

Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, is-
sues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.

9.5.4 Scope

This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing
the community in public spaces. Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed representative at an online or offline event.

9.5.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders respon-
sible for enforcement at niknett@gmail.com. All complaints will be reviewed and investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security of the reporter of any incident.

9.5.6 Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining the consequences for any action
they deem in violation of this Code of Conduct:

1. Correction

Community Impact: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the
community.

Consequence: A private, written warning from community leaders, providing clarity around the nature of the violation
and an explanation of why the behavior was inappropriate. A public apology may be requested.

2. Warning

Community Impact: A violation through a single incident or series of actions.

Consequence: A warning with consequences for continued behavior. No interaction with the people involved, includ-
ing unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes
avoiding interactions in community spaces as well as external channels like social media. Violating these terms may
lead to a temporary or permanent ban.

34 Chapter 9. Credits

mailto:niknett@gmail.com

Merge StarDist Masks

3. Temporary Ban

Community Impact: A serious violation of community standards, including sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public communication with the community for a
specified period of time. No public or private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent
ban.

4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community standards, including sustained inappropriate
behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the community.

9.5.7 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 2.0, available at https://www.
contributor-covenant.org/version/2/0/code_of_conduct.html.

Community Impact Guidelines were inspired by Mozilla’s code of conduct enforcement ladder.

For answers to common questions about this code of conduct, see the FAQ at https://www.contributor-covenant.org/faq.
Translations are available at https://www.contributor-covenant.org/translations.

9.6 MIT License

Copyright © 2022 Niklas Netter

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

The software is provided “as is”, without warranty of any kind, express or implied, including but not limited to
the warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall the
authors or copyright holders be liable for any claim, damages or other liability, whether in an action of contract,
tort or otherwise, arising from, out of or in connection with the software or the use or other dealings in the
software.

9.6. MIT License 35

https://www.contributor-covenant.org
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html
https://github.com/mozilla/diversity
https://www.contributor-covenant.org/faq
https://www.contributor-covenant.org/translations

Merge StarDist Masks

36 Chapter 9. Credits

PYTHON MODULE INDEX

m
merge_stardist_masks.naive_fusion, 24

37

Merge StarDist Masks

38 Python Module Index

INDEX

G
get_poly_list_to_label() (in module

merge_stardist_masks.naive_fusion), 24
get_poly_to_label() (in module

merge_stardist_masks.naive_fusion), 24

I
inflate_array() (in module

merge_stardist_masks.naive_fusion), 24

M
merge_stardist_masks.naive_fusion

module, 24
mesh_from_shape() (in module

merge_stardist_masks.naive_fusion), 24
module

merge_stardist_masks.naive_fusion, 24
my_polygons_list_to_label() (in module

merge_stardist_masks.naive_fusion), 24
my_polygons_to_label() (in module

merge_stardist_masks.naive_fusion), 25
my_polyhedron_list_to_label() (in module

merge_stardist_masks.naive_fusion), 25
my_polyhedron_to_label() (in module

merge_stardist_masks.naive_fusion), 25

N
naive_fusion() (in module

merge_stardist_masks.naive_fusion), 26
naive_fusion_anisotropic_grid() (in module

merge_stardist_masks.naive_fusion), 27
naive_fusion_isotropic_grid() (in module

merge_stardist_masks.naive_fusion), 28
no_slicing_slice_point() (in module

merge_stardist_masks.naive_fusion), 29

P
paint_in_with_overlaps() (in module

merge_stardist_masks.naive_fusion), 29
paint_in_without_overlaps() (in module

merge_stardist_masks.naive_fusion), 30

paint_in_without_overlaps_check_probs() (in
module merge_stardist_masks.naive_fusion),
30

points_from_grid() (in module
merge_stardist_masks.naive_fusion), 30

poly_list_with_probs() (in module
merge_stardist_masks.naive_fusion), 31

S
slice_point() (in module

merge_stardist_masks.naive_fusion), 31

39

	Features
	Requirements
	Usage
	Installation
	Contributing
	License
	Issues
	How to cite
	Credits
	Usage
	napari plugin
	Installation
	Via pip
	Within napari
	After installation

	Usage
	Preparations
	Run a segmentation

	Reference
	merge_stardist_masks.naive_fusion

	Contributor Guide
	How to report a bug
	How to request a feature
	How to set up your development environment
	How to test the project
	How to submit changes

	Contributor Covenant Code of Conduct
	Our Pledge
	Our Standards
	Enforcement Responsibilities
	Scope
	Enforcement
	Enforcement Guidelines
	1. Correction
	2. Warning
	3. Temporary Ban
	4. Permanent Ban

	Attribution

	MIT License

	Python Module Index
	Index

